Základní aspekty pylové výživy včel a využití náhražek pylu_ LITERATURA

Kristýna Myslínová

1/2025, strana 30

Použitá  literatura k článku Základní aspekty pylové výživy včel a využití náhražek pylu

 

 

Literatura:

1            Brodschneider, R. & Crailsheim, K. Nutrition and health in honey bees. http://dx.doi.org/10.1051/apido/2010012 41 (2010). https://doi.org/10.1051/apido/2010012

2            Paris, L., El Alaoui, H., Delbac, F. & Diogon, M. Effects of the gut parasite Nosema ceranae on honey bee physiology and behavior. Current Opinion in Insect Science 26, 149-154 (2018). https://doi.org/https://doi.org/10.1016/j.cois.2018.02.017

3            Martín-Hernández, R. et al.  Vol. 12   (Public Library of Science, 2017).

4            Douglas, A. E. Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 60, 17-34 (2015). https://doi.org/10.1146/annurev-ento-010814-020822

5            Di Pasquale, G. et al. Influence of Pollen Nutrition on Honey Bee Health: Do Pollen Quality and Diversity Matter? PLOS ONE 8, e72016 (2013). https://doi.org/10.1371/journal.pone.0072016

6            Nicolson, S. W. Bee food: the chemistry and nutritional value of nectar, pollen and mixtures of the two. African Zoology 46, 197-204 (2011). https://doi.org/10.1080/15627020.2011.11407495

7            Bryś, M. S. & Strachecka, A. The Key Role of Amino Acids in Pollen Quality and Honey Bee Physiology—A Review. Molecules 29 (2024).

8            Fengkui, Z., Baohua, X., Ge, Z. & Hongfang, W. The Appropriate Supplementary Level of Tryptophan in the Diet of Apis mellifera (Hymenoptera: Apidae) Worker Bees. Journal of Insect Science 15, 161 (2015). https://doi.org/10.1093/jisesa/iev142

9            Mollaei, M., Hoseini, S., Karimi, M. & Hekmat, Z. Impact of the amino acid proline on the cold hardiness of honey bee, Apis mellifera L. Spanish journal of agricultural research 11, 714-717 (2013).

10          DeGrandi-Hoffman, G. et al. Connecting the nutrient composition of seasonal pollens with changing nutritional needs of honey bee (Apis mellifera L.) colonies. Journal of Insect Physiology 109, 114-124 (2018). https://doi.org/https://doi.org/10.1016/j.jinsphys.2018.07.002

11          Manning, R. Fatty acids in pollen: a review of their importance for honey bees. Bee World 82, 60-75 (2001). https://doi.org/10.1080/0005772X.2001.11099504

12          Valverde, S. et al. Mineral composition of bee pollen and its relationship with botanical origin and harvesting period. Journal of Food Composition and Analysis 119, 105235 (2023). https://doi.org/https://doi.org/10.1016/j.jfca.2023.105235

13          Komosinska-Vassev, K., Olczyk, P., Kaźmierczak, J., Mencner, L. & Olczyk, K. Bee Pollen: Chemical Composition and Therapeutic Application. Evidence-Based Complementary and Alternative Medicine 2015, 297425 (2015). https://doi.org/https://doi.org/10.1155/2015/297425

14          de Arruda, V. A. S., Pereira, A. A. S., de Freitas, A. S., Barth, O. M. & de Almeida-Muradian, L. B. Dried bee pollen: B complex vitamins, physicochemical and botanical composition. Journal of Food Composition and Analysis 29, 100-105 (2013). https://doi.org/https://doi.org/10.1016/j.jfca.2012.11.004

15          Kaur, J., Singh, J., Kaur, S., Nanda, V. & Rasane, P. Evaluation and comparative analysis of the physicochemical and phytochemical characteristics of mustard and multi-floral bee pollen. South African Journal of Botany 174, 468-474 (2024). https://doi.org/https://doi.org/10.1016/j.sajb.2024.09.023

16          Végh, R. & Csóka, M. in Pollen Chemistry & Biotechnology   (eds Nesrin Ecem Bayram, Aleksandar Ž. Kostic, & Yusuf Can Gercek)  17-49 (Springer International Publishing, 2023).

17          Kostić, A. Ž. & Kilibarda, S. in Pollen Chemistry & Biotechnology   (eds Nesrin Ecem Bayram, Aleksandar Ž. Kostic, & Yusuf Can Gercek)  71-84 (Springer International Publishing, 2023).

18          Miłek, M. et al. Chemical Composition and Bioactivity of Laboratory-Fermented Bee Pollen in Comparison with Natural Bee Bread. Biomolecules 13 (2023).

19          Bakour, M. et al. Bee bread as a functional product: Chemical composition and bioactive properties. LWT 109, 276-282 (2019). https://doi.org/https://doi.org/10.1016/j.lwt.2019.02.008

20          Ghosh, S. & Jung, C. Temporal changes of nutrient composition from pollen patty to bee bread with special emphasis on amino and fatty acids composition. Journal of Asia-Pacific Entomology 25, 101873 (2022). https://doi.org/https://doi.org/10.1016/j.aspen.2022.101873

21          Engel, P., Martinson, V. G. & Moran, N. A. Functional diversity within the simple gut microbiota of the honey bee. Proceedings of the National Academy of Sciences 109, 11002-11007 (2012). https://doi.org/10.1073/pnas.1202970109

22          Branchiccela, B. et al. Impact of nutritional stress on the honeybee colony health. Scientific Reports 9, 10156 (2019). https://doi.org/10.1038/s41598-019-46453-9

23          Castelli, L. et al. Impact of Nutritional Stress on Honeybee Gut Microbiota, Immunity, and Nosema ceranae Infection. Microbial Ecology 80, 908-919 (2020). https://doi.org/10.1007/s00248-020-01538-1

24          Kešnerová, L. et al. Gut microbiota structure differs between honeybees in winter and summer. The ISME Journal 14, 801-814 (2020). https://doi.org/10.1038/s41396-019-0568-8

25          Mahé, C., Jumarie, C. & Boily, M. The countryside or the city: Which environment is better for the honeybee? Environmental Research 195, 110784 (2021). https://doi.org/https://doi.org/10.1016/j.envres.2021.110784

26          Zhao, H. et al. Review on effects of some insecticides on honey bee health. Pesticide Biochemistry and Physiology 188, 105219 (2022). https://doi.org/https://doi.org/10.1016/j.pestbp.2022.105219

27          Barascou, L. et al. Pollen nutrition fosters honeybee tolerance to pesticides. R Soc Open Sci 8, 210818 (2021). https://doi.org/10.1098/rsos.210818

28          Alma, A. M., de Groot, G. S. & Buteler, M. Microplastics incorporated by honeybees from food are transferred to honey, wax and larvae. Environmental Pollution 320, 121078 (2023). https://doi.org/https://doi.org/10.1016/j.envpol.2023.121078

29          Stapleton, M. J. & Hai, F. I. Microplastics as an emerging contaminant of concern to our environment: a brief overview of the sources and implications. Bioengineered 14, 2244754 (2023). https://doi.org/10.1080/21655979.2023.2244754

30          Joo, S. H., Liang, Y., Kim, M., Byun, J. & Choi, H. Microplastics with adsorbed contaminants: Mechanisms and Treatment. Environmental Challenges 3, 100042 (2021). https://doi.org/https://doi.org/10.1016/j.envc.2021.100042

31          Wang, K. et al. Gut microbiota protects honey bees (Apis mellifera L.) against polystyrene microplastics exposure risks. Journal of Hazardous Materials 402, 123828 (2021). https://doi.org/https://doi.org/10.1016/j.jhazmat.2020.123828

32          Favaro, R. et al. Botanical Origin of Pesticide Residues in Pollen Loads Collected by Honeybees During and After Apple Bloom. Frontiers in Physiology 10 (2019). https://doi.org/10.3389/fphys.2019.01069

33          Noordyke, E. & Ellis, J. Reviewing the Efficacy of Pollen Substitutes as a Management Tool for Improving the Health and Productivity of Western Honey Bee (Apis mellifera) Colonies. Frontiers in Sustainable Food Systems 5, 772897 (2021). https://doi.org/10.3389/fsufs.2021.772897

34          Morais, M. et al. Evaluation of inexpensive pollen substitute diets through quantification of haemolymph proteins. Journal of Apicultural Research 52, 119-121 (2013). https://doi.org/10.3896/IBRA.1.52.3.01

35          Dias, J. et al. Fermentation of a Pollen Substitute Diet with Beebread Microorganisms Increases Diet Consumption and Hemolymph Protein Levels of Honey Bees (Hymenoptera, Apidae). Sociobiology 65, 760 (2018). https://doi.org/10.13102/sociobiology.v65i4.3293

36          Noordyke, E., van Santen, E. & Ellis, J. Evaluating the strength of western honey bee ( Apis mellifera L.) colonies fed pollen substitutes over winter. Journal of Applied Entomology 146 (2021). https://doi.org/10.1111/jen.12957

37          Eshbah, H., Adel, R., Zedan, O. & Ghanem, A. EFFECT OF FEEDING HONEYBEE COLONIES WITH SOME POLLEN SUBSTITUTES ON DEVELOPMENT OF HYPOPHARYNGEAL GLANDS IN ASSIUT GOVERNORATE. 663-671 (2016).

38          Narantuya, S. & Norovsambuu, T. Effects of Vitamin Supplements in a Pollen Substitute on Some Characteristics of Bee Nucleus Colonies. Bee Studies- Apiculture Research Institute (2024). https://doi.org/10.51458/BSTD.2024.39

39          Ricigliano, V. A. Microalgae as a promising and sustainable nutrition source for managed honey bees. Archives of Insect Biochemistry and Physiology 104, e21658 (2020). https://doi.org/https://doi.org/10.1002/arch.21658

40          Jehlík, T. et al. Effects of Chlorella sp. on biological characteristics of the honey bee Apis mellifera. Apidologie 50, 564-577 (2019). https://doi.org/10.1007/s13592-019-00670-3

41          Dostálková, S., Kodrík, D., Simone-Finstrom, M., Petřivalský, M. & Danihlík, J. Fine-scale assessment of Chlorella syrup as a nutritional supplement for honey bee colonies. Frontiers in Ecology and Evolution 10 (2022). https://doi.org/10.3389/fevo.2022.1028037

42          Dostálková, S. et al. Fatty acids and their derivatives from Chlorella vulgaris extracts exhibit in vitro antimicrobial activity against the honey bee pathogen Paenibacillus larvae. Journal of Apicultural Research 63, 310-322 (2021). https://doi.org/10.1080/00218839.2021.1994264

43          Chen, H. et al. Metabolomic analysis of honey bees (Apis mellifera) response to carbendazim based on UPLC-MS. Pesticide Biochemistry and Physiology 179, 104975 (2021). https://doi.org/https://doi.org/10.1016/j.pestbp.2021.104975

44          Jousse, C. et al. A combined LC-MS and NMR approach to reveal metabolic changes in the hemolymph of honeybees infected by the gut parasite Nosema ceranae. Journal of Invertebrate Pathology 176, 107478 (2020). https://doi.org/https://doi.org/10.1016/j.jip.2020.107478