Bibliografie:
1 Snodgrass, R. E. (1925). Anatomy and Physiology of the Honeybee (Vol. 20). McGraw-Hill Book Company, Incorporated.
2 Eskov, E. K., Eskova, M. D., Rozhenkov, A. S., & Shestakova, E. V. (2022). Damage to the Intestinal Medium of Honey Bees with Nosema. Cell and Tissue Biology, 16(1), 92–96.
3 Moritz, B., & Crailsheim, K. (1987). Physiology of protein digestion in the midgut of the honeybee (Apis mellifera L.). Journal of Insect Physiology, 33(12), 923-931.4 Pavlović, R., Šokarda Slavić, M., Margetić, A., Božić, N., Vujčić, M., Dojnov, B., & Vujčić, Z. (2024). Exploring the connection between food and midgut digestive enzymes to improve honey bee (Apis mellifera) nutrition. Journal of Apicultural Research, 1-12.
5 Huang, J. H., Jing, X., & Douglas, A. E. (2015). The multi-tasking gut epithelium of insects. Insect Biochemistry and Molecular Biology, 67, 15–20.
6 das Dores Teixeira, A., Marques-Araújo, S., Zanuncio, J. C., & Serrão, J. E. (2015). Peritrophic membrane origin in adult bees (Hymenoptera): Immunolocalization. Micron, 68, 91-97.
7 Nocelli, R. C., Cintra-Socolowski, P., Roat, T. C., Silva-Zacarin, E. C., & Malaspina, O. (2016). Comparative physiology of Malpighian tubules: Form and function. Open Access Insect Physiology, 6, 13–23.
8 Engel, P., & Moran, N. A. (2013). Functional and evolutionary insights into the simple yet specific gut microbiota of the honey bee from metagenomic analysis. Gut microbes, 4(1), 60-65.
9 Audisio, M. C., Torres, M. J., Sabaté, D. C., Ibarguren, C., & Apella, M. C. (2011). Properties of different lactic acid bacteria isolated from Apis mellifera L. bee-gut. Microbiological research, 166(1), 1-13.
10 Danihlík, J., Aronstein, K., & Petřivalský, M. (2015). Antimicrobial peptides: A key component of honey bee innate immunity. Journal of Apicultural Research, 54(2), 123–136.
11 Gliński Z. & Jarosz J. (2001). Infection and immunity in the honey bee Apis mellifera. Apiacta, 36(1), 12-24.
12 Gliński, Z., & Buczek K. (2003). Response of the Apoidea to fungal infection. Apiacta 38, 183-189.
13 Evans, J. D., & Spivak, M. (2010). Socialized medicine: Individual and communal disease barriers in honey bees. Journal of Invertebrate Pathology, 103, S62–S72. https://doi.org/10.1016/j.jip.2009.06.019
14 Erlandson, M. A., Toprak, U., & Hegedus, D. D. (2019). Role of the peritrophic matrix in insect-pathogen interactions. Journal of insect physiology, 117, 103894.
15 Caccia, S., Casartelli, M., & Tettamanti, G. (2019). The amazing complexity of insect midgut cells: Types, peculiarities, and functions. Cell and Tissue Research, 377(3), 505–525.
16 Larsen, A., Reynaldi, F. J., & Guzmán-Novoa, E. (2019). Fundaments of the honey bee (Apis mellifera) immune system. Review. Revista Mexicana de Ciencias Pecuarias, 10(3), 705–728.
17 Luo, Y., & Song, Y. (2021). Mechanism of Antimicrobial Peptides: Antimicrobial, Anti-Inflammatory and Antibiofilm Activities. International Journal of Molecular Sciences, 22(21), 11401.
18 Martinson V.G., Moy J., Moran N.A. (2012): Establishment of characteristic gut bacteria during development of the honeybee worker. Applied and Environmental Microbiology 78, 2830-2840.
19 Moran N.A., Hansen A.K. , Powell J.E., Sabree Z.L. (2012): Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLOS One 7:e36393.
20 Powell, J. E., Martinson, V. G., Urban-Mead, K., & Moran, N. A. (2014). Routes of acquisition of the gut microbiota of the honey bee Apis mellifera. Applied and environmental microbiology, 80(23), 7378-7387.
21 Raymann, K., & Moran, N. A. (2018). The role of the gut microbiome in health and disease of adult honey bee workers. Current Opinion in Insect Science, 26, 97–104.
22 Saelao, P., Borba, R. S., Ricigliano, V., Spivak, M., & Simone-Finstrom, M. (2020). Honeybee microbiome is stabilized in the presence of propolis. Biology letters, 16(5), 20200003.
23 Kwong, W. K., Mancenido, A. L., & Moran, N. A. (2017). Immune system stimulation by the native gut microbiota of honey bees. Royal Society Open Science, 4(2), 170003.
24 Emery, O., Schmidt, K., & Engel, P. (2017). Immune system stimulation by the gut symbiont Frischella perrara in the honey bee (Apis mellifera). Molecular ecology, 26(9), 2576-2590.
25 Evans, J. D., Aronstein, K., Chen, Y. P., Hetru, C., Imler, J. L., Jiang, H., ... & Hultmark, D. (2006). Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect molecular biology, 15(5), 645-656.
26 Horak, R. D., Leonard, S. P., & Moran, N. A. (2020). Symbionts shape host innate immunity in honeybees. Proceedings of the Royal Society B, 287(1933), 20201184.
27 Ryu, J. H., Ha, E. M., & Lee, W. J. (2010). Innate immunity and gut–microbe mutualism in Drosophila. Developmental & Comparative Immunology, 34(4), 369-376.
28 Tian, B., Fadhil, N. H., Powell, J. E., Kwong, W. K., & Moran, N. A. (2012). Long-term exposure to antibiotics has caused accumulation of resistance determinants in the gut microbiota of honeybees. MBio, 3(6), 10-1128.
29 Tokarev, Y. S., Huang, W. F., Solter, L. F., Malysh, J. M., Becnel, J. J., & Vossbrinck, C. R. (2020). A formal redefinition of the genera Nosema and Vairimorpha (Microsporidia: Nosematidae) and reassignment of species based on molecular phylogenetics. Journal of invertebrate pathology, 169, 107279.
30 Higes, M., Martín, R., & Meana, A. (2006). Nosema ceranae, a new microsporidian parasite in honeybees in Europe. Journal of invertebrate pathology, 92(2), 93-95.
31 Martín-Hernández, R., Botías, C., Barrios, L., Martínez-Salvador, A., Meana, A., Mayack, C., & Higes, M. (2011). Comparison of the energetic stress associated with experimental Nosema ceranae and Nosema apis infection of honeybees (Apis mellifera). Parasitology research, 109, 605-612.
32 Galajda, R., Valenčáková, A., Sučik, M., & Kandráčová, P. (2021). Nosema disease of European honey bees. Journal of Fungi, 7(9), 714.
33 Wei, X., Evans, J. D., Chen, Y., & Huang, Q. (2022). Spillover and genome selection of the gut parasite Nosema ceranae between honey bee species. Frontiers in Cellular and Infection Microbiology, 12, 1026154.
34 Borges, D., Guzman-Novoa, E., & Goodwin, P. H. (2021). Effects of prebiotics and probiotics on honey bees (Apis mellifera) infected with the microsporidian parasite Nosema ceranae. Microorganisms, 9(3), 481.
35 El Khoury, S., Rousseau, A., Lecoeur, A., Cheaib, B., Bouslama, S., Mercier, P. L., ... & Derome, N. (2018). Deleterious Interaction Between Honey bees (Apis mellifera) and its Microsporidian Intracellular Parasite Nosema ceranae Was Mitigated by Administrating Either Endogenous or Allochthonous Gut Microbiota Strains. Frontiers in Ecology and Evolution, 6, 58.
36 Li, J. H., Evans, J. D., Li, W. F., Zhao, Y. Z., DeGrandi-Hoffman, G., Huang, S. K., ... & Chen, Y. P. (2017). New evidence showing that the destruction of gut bacteria by antibiotic treatment could increase the honey bee’s vulnerability to Nosema infection. PloS one, 12(11), e0187505.
37 Schwarz, R. S., Bauchan, G. R., Murphy, C. A., Ravoet, J., de Graaf, D. C., & Evans, J. D. (2015). Characterization of Two Species of Trypanosomatidae from the Honey Bee Apis mellifera: Crithidia mellificae Langridge and McGhee, and Lotmaria passim n. gen., n. sp. Journal of Eukaryotic Microbiology, 62(5), 567-583.
38 Hubert, J., Bicianova, M., Ledvinka, O., Kamler, M., Lester, P. J., Nesvorna, M., ... & Erban, T. (2017). Changes in the bacteriome of honey bees associated with the parasite Varroa destructor, and pathogens Nosema and Lotmaria passim. Microbial ecology, 73, 685-698.
39 Raymann, K., Shaffer, Z., & Moran, N. A. (2017). Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS biology, 15(3), e2001861.
40 Baffoni, L., Alberoni, D., Gaggìa, F., Braglia, C., Stanton, C., Ross, P. R., & Di Gioia, D. (2021). Honeybee exposure to veterinary drugs: how is the gut microbiota affected?. Microbiology Spectrum, 9(1), 10-1128.
41 Jia, S., Wu, Y., Chen, G., Wang, S., Hu, F., & Zheng, H. (2022). The pass-on effect of tetracycline-induced honey bee (Apis mellifera) gut community dysbiosis. Frontiers in Microbiology, 12, 781746.
42 Huang, W. F., Solter, L. F., Yau, P. M., & Imai, B. S. (2013). Nosema ceranae escapes fumagillin control in honey bees. PLoS pathogens, 9(3), e1003185.
43 Smriti, Rana, A., Singh, G., & Gupta, G. (2024). Prospects of probiotics in beekeeping: A review for sustainable approach to boost honeybee health. Archives of Microbiology, 206(5), 205.
44 Damico, M. E., Beasley, B., Greenstein, D., & Raymann, K. (2023). Testing the effectiveness of a commercially sold probiotic on restoring the gut microbiota of honey bees: A field study. Probiotics and Antimicrobial Proteins, 1-10.
45 Urcan, A. C., Criste, A. D., Bobiș, O., Cornea-Cipcigan, M., Giurgiu, A. I., & Dezmirean, D. S. (2024). Evaluation of Functional Properties of Some Lactic Acid Bacteria Strains for Probiotic Applications in Apiculture. Microorganisms, 12(6), 1249.
46 Tsvetkov, N., Samson-Robert, O., Sood, K., Patel, H. S., Malena, D. A., Gajiwala, P. H., ... & Zayed, A. (2017). Chronic exposure to neonicotinoids reduces honey bee health near corn crops. Science, 356(6345), 1395-1397.
47 Li, B., Chen, X., Ke, L., Dai, P., Ge, Y., & Liu, Y. J. (2024). Early-Life Sublethal Exposure to Thiacloprid Alters Adult Honeybee Gut Microbiota. Genes, 15(8), 1001.
48 Su, Y., Shi, J., Hu, Y., Liu, J., & Wu, X. (2024). Acetamiprid Exposure Disrupts Gut Microbiota in Adult and Larval Worker Honeybees (Apis mellifera L.). Insects, 15(12), 927.
49 Qi, S., Al Naggar, Y., Li, J., Liu, Z., Xue, X., Wu, L., ... & Wang, K. (2022). Acaricide flumethrin-induced sublethal risks in honeybees are associated with gut symbiotic bacterium Gilliamella apicola through microbe-host metabolic interactions. Chemosphere, 307, 136030.
50 Wu, J., Liu, F., Sun, J., Wei, Q., Kang, W., Wang, F., ... & Han, B. (2024). Toxic effects of acaricide fenazaquin on development, hemolymph metabolome, and gut microbiome of honeybee (Apis mellifera) larvae. Chemosphere, 358, 142207.
51 Ma, C., Gu, G., Chen, S., Shi, X., Li, Z., Li-Byarlay, H., & Bai, L. (2024). Impact of chronic exposure to field level glyphosate on the food consumption, survival, gene expression, gut microbiota, and metabolomic profiles of honeybees. Environmental Research, 250, 118509.
52 Roy, N., Moon, S., Kim, C., Kim, J. M., Lee, K. S., Shin, Y., ... & Choi, K. (2024). Probiotic Potential of Bacillus Subtilis Strain I3: Antagonistic Activity Against Chalkbrood Pathogen and Pesticide Degradation for Enhancing Honeybee Health. Probiotics and Antimicrobial Proteins, 1-11.
51 Damico, M. E., Beasley, B., Greenstein, D., & Raymann, K. (2023). Testing the effectiveness of a commercially sold probiotic on restoring the gut microbiota of honey bees: A field study. Probiotics and Antimicrobial Proteins, 1-10.
53 Robino, P., Galosi, L., Bellato, A., Vincenzetti, S., Gonella, E., Ferrocino, I., ... & Rossi, G. (2024). Effects of a supplemented diet containing 7 probiotic strains (Honeybeeotic) on honeybee physiology and immune response: analysis of hemolymph cytology, phenoloxidase activity, and gut microbiome. Biological Research, 57(1), 50.
54 Amaretti, A., Di Nunzio, M., Pompei, A., Raimondi, S., Rossi, M., & Bordoni, A. (2013). Antioxidant properties of potentially probiotic bacteria: in vitro and in vivo activities. Applied microbiology and biotechnology, 97, 809-817.
55 Tejerina, M. R., Benítez-Ahrendts, M. R., & Audisio, M. C. (2020). Lactobacillus salivarius A3iob reduces the incidence of Varroa destructor and Nosema spp. in commercial apiaries located in the northwest of Argentina. Probiotics and Antimicrobial Proteins, 12, 1360-1369.
56 Iorizzo, M., Letizia, F., Ganassi, S., Testa, B., Petrarca, S., Albanese, G., ... & De Cristofaro, A. (2022). Functional properties and antimicrobial activity from lactic acid bacteria as resources to improve the health and welfare of honey bees. Insects, 13(3), 308.
57 Borges, D., Guzman-Novoa, E., & Goodwin, P. H. (2021). Effects of prebiotics and probiotics on honey bees (Apis mellifera) infected with the microsporidian parasite Nosema ceranae. Microorganisms, 9(3), 481.
58 Bogdan, C. (2001). Nitric oxide and the immune response. Nature immunology, 2(10), 907-916.
59 Negri, P., Maggi, M., Correa-Aragunde, N., Brasesco, C., Eguaras, M., & Lamattina, L. (2013). Nitric oxide participates at the first steps of Apis mellifera cellular immune activation in response to non-self recognition. Apidologie, 44(5), 575–585.
60 Negri, P., Maggi, M. D., Ramirez, L., De Feudis, L., Szwarski, N., Quintana, S., Eguaras, M. J., & Lamattina, L. (2015). Abscisic acid enhances the immune response in Apis mellifera and contributes to the colony fitness. Apidologie, 46(4), 542–557.
61 Negri, P., Maggi, M., Ramirez, L., Szawarski, N., De Feudis, L., Lamattina, L., & Eguaras, M. (2016). Cellular immunity in Apis mellifera: Studying hemocytes brings light about bees skills to confront threats. Apidologie, 47(3), 379–388.
62 Negri, P., Quintana, S., Maggi, M., Szawarski, N., Lamattina, L., & Eguaras, M. (2014). Apis mellifera hemocytes generate increased amounts of nitric oxide in response to wounding/encapsulation. Apidologie, 45(5), 610–617.
63 Negri, P., Ramirez, L., Quintana, S., Szawarski, N., Maggi, M., Le Conte, Y., Lamattina, L., & Eguaras, M. (2017). Dietary Supplementation of Honey Bee Larvae with Arginine and Abscisic Acid Enhances Nitric Oxide and Granulocyte Immune Responses after Trauma. Insects, 8(3), 85.
64 Eleftherianos, I., More, K., Spivack, S., Paulin, E., Khojandi, A., & Shukla, S. (2014). Nitric
Oxide Levels Regulate the Immune Response of Drosophila melanogaster Reference
Laboratory Strains to Bacterial Infections. Infection and Immunity, 82(10), 4169–4181.
65 Foley, E., & O’Farrell, P. H. (2003). Nitric oxide contributes to induction of innate immune
responses to gram-negative bacteria in Drosophila. Genes & Development, 17(1), 115–125.
66 Tölgová L. (2024). Studium antimikrobiálních peptidů v epiteliální imunitě včely medonosné
[Diplomová práce]. Univerzita Palackého v Olomouci, Česká republika.
67 Ramos-Vara, J. A. (2005). Technical aspects of immunohistochemistry. Veterinary pathology, 42(4), 405-426.