1 Lino-Neto, J., Báo, S. N., & Dolder, H. (2000). Sperm ultrastructure of the honey bee (Apis mellifera) (L) (Hymenoptera, Apidae) with emphasis on the nucleus-flagellum transition region. Tissue Cell, 32(4), 322-327. https://doi.org/10.1054/tice.2000.0119
2 Hoage, T. R., & Kessel, R. G. (1968). An Electron Microscope Study of the Process of Differentiation during Spermatogenesis in the Drone Honey Bee (Apis mellifera L.) with Special Reference to Centriole Replication and Elimination. J, ultrastructure research, 24, 6-32. https://doi.org/10.1016/S0022-5320(68)80014-0
3 Hayashi, S., & Satoh, T. (2019). Sperm maturation process occurs in the seminal vesicle following sperm transition from testis in honey bee males. Apidologie, 50(3), 369-378. https://doi.org/10.1007/s13592-019-00652-5
4 Rhodes, J. W., Harden, S., Spooner-Hart, R., Anderson, D. L., & Wheen, G. W. (2011). Effects of age, season and genetics on semen and sperm production in Apis mellifera drones. Apidologie, 42, 29-38. https://doi.org/10.1051/apido/2010026
5 Baer, B., Eubel, H., Taylor, N. L., O'Toole, N., & Millar, A. H. (2009). Insights into female sperm storage from the spermathecal fluid proteome of the honeybee Apis mellifera. Genome Biology, 10(6). https://doi.org/10.1186/gb-2009-10-6-r67
6 Zhao, H., Mashilingi, S. K., Liu, Y., & An, J. A. (2021). Factors Influencing the Reproductive Ability of Male Bees: Current Knowledge and Further Directions. Insects, 12(6), 529. https://doi.org/10.3390/insects12060529
7 Rangel, J., & Fisher, A. (2019). Factors affecting the reproductive health of honey bee (Apis mellifera ) drones—a review. Apidologie, 50, 759-778. https://doi.org/10.1007/s13592-019-00684-x
8 Stürup, M. J. J. B., Baer-Imhoof, B., Nash, D. R., Boomsma, J. J., & Baer, B. (2013). When every sperm counts: Factors affecting male fertility in the honeybee Apis mellifera. Behavioral Ecology, 24(5), 1192–1198. https://doi.org/10.1093/beheco/art049
9 Czekońska, K.; Chuda-Mickiewicz, B.; Samborski, J. (2014). Quality of honeybee drones reared in colonies with limited and unlimited access to pollen. Apidologie, 46, 1–9. https://doi.org/10.1007/s13592-014-0296-z
10 Rousseau, A., & Giovenazzo, P. (2016). Optimizing Drone Fertility With Spring Nutritional Supplements to Honey Bee (Hymenoptera: Apidae) Colonies. Journal of Economic Entomology, 109(3), 1009–1014. https://doi.org/10.1093/jee/tow056
11 Zaitoun, S., Al-Majeed Al-Ghzawi, A., & Kridli, R. (2009). Monthly changes in various drone characteristics of Apis mellifera ligustica and Apis mellifera syriaca. Entomological Science, 12, 208-2014. https://doi.org/10.1111/j.1479-8298.2009.00324Začátek formuláře
12 Gençer, H. V., & Firatli, Ç. (2015). Reproductive and morphological comparisons of drones reared in queenright and laying worker colonies. Journal of Apicultural Research, 44(4), 163-167. https://doi.org/10.1080/00218839.2005.11101172
13 Czekońska, K.; Chuda-Mickiewicz, B.; Chorbiński, P. (2013). The effect of brood incubation temperature on the reproductive value of honey bee (Apis mellifera) drones. Journal of Apicultural Research, 52, 96–105. https://doi.org/10.3896/IBRA.1.52.2.19
14 Winston, M. L. (1987). The Biology of the Honey bee. Harvard University Press.
15 Jaycox, E. R. (1961). The Effects of Various Foods and Temperatures on Sexual Maturity of the Drone Honey Bee (Apis mellifera). Annals of the Entomological Society of America, 54(4), 519-523. https://doi.org/10.1093/aesa/54.4.519
16 Bieńkowska, M., Panasiuk, B., Węgrzynowicz, P. W., & Gerula, D. (2011). The effect of different thermal conditions on drone semen quality and number of spermatozoa entering the spermatheca of queen bee. Journal of Apicultural Science, 55(2), 161.
17 Hayashi, S., & Satoh, T. (2019). Sperm maturation process occurs in the seminal vesicle following sperm transition from testis in honey bee males. Apidologie, 50, 369-378. https://doi.org/10.1007/s13592-019-00652-5
18 Locke, S. J., & Peng, Y. - N. (2008). The effects of drone age, semen storage and contamination on semen quality in the honey bee (Apis mellifera). Physiological Entomology, 18(2), 144-148. https://doi.org/10.1111/j.1365-3032.1993.tb00461.x
19 Woyke, J. W. O. Y. K. E., & Jasinski, Z. (1978). Influence of age of drones on the results of instrumental insemination of honeybee queens. Apidologie, 7(4), 203-212. https://doi.org/10.1051/apido:19780304
20 Fuchs, S. (1992). Choice in Varroa jacobsoni Oud. between honey bee drone or workerbrood cells for reproduction. Behavioral Ecology and Sociobiology, 31(6), 429-435. https://doi.org/10.1007/BF00170610
21 Omar, R. (2017). Effect of Varroa Infestation on the Development of Body Weight and some Reproductive Organs of Honeybee Drones, Apis mellifera L. Middle East Journal of Applied Sciences, 7(2), 272-279.
22 Bruckner, S., Straub, L., Neumann, P., & Williams, G. R. (2021). Synergistic and Antagonistic Interactions Between Varroa destructor Mites and Neonicotinoid Insecticides in Male Apis mellifera Honey Bees. Frontiers in Ecology and Evolution, 9. https://doi.org/10.3389/fevo.2021.756027
23 Yañez, O., Jaffé, R., Jarosch, A. J., Fries, I., Moritz, R. F. A., Paxton, R. J. P., & de Miranda, J. R. (2011). Deformed wing virus and drone mating flights in the honey bee (Apis mellifera): implications for sexual transmission of a major honey bee virus. Apidologie, (43), 17-30. https://doi.org/10.1007/s13592-011-0088-7
24 Straub, L., Villamar-Bouza, L., Bruckner, S., Chantawannakul, P., Gauthier, L. G., Khongphinitbunjong, K., Retschnig, G., Troxler, A., Vidondo, B., Neumann, P. N., & Williams, G. R. Neonicotinoid insecticides can serve as inadvertent insect contraceptives. Proceedings. Biological sciences, 283(1835). https://doi.org/10.1098/rspb.2016.0506
25 Ciereszko, A., Wilde, J., Dietrich, G. J., Siuda, M., Bąk, B., Judycka, S., & Karol, H. Sperm parameters of honeybee drones exposed to imidacloprid. Apidologie, 48, 211-222. https://doi.org/10.1007/s13592-016-0466-2
26 Fisher, A., & Rangel, J. Exposure to pesticides during development negatively affects honey bee (Apis mellifera) drone sperm viability. PLoS one, 13(12). https://doi.org/10.1371/journal.pone.0208630
27 Williams, G. R., Troxler, A., Retschnig, G., Roth, K., Yañez, O., Shutler, D., Neumann, P., & Gauthier, L. Neonicotinoid pesticides severely affect honey bee queens. Scientific Reports, 5, 14621. https://doi.org/10.1038/srep14621
28 Shoukry R. S., Khattaby A. M., El-Sheakh A. A., Abo-Ghalia A. H., Elbanna S.M. (2013). Effect of some materials for controlling varroa mite on the honeybee drones (Apis mellifera L.). Egyptian Journal of Agricultural Research, 91 (3), 825–834. https://doi.org/10.21608/ejar.2013.165098
29 Rangel, J., Shepherd, T. F., Gonzalez, A. N., Hillhouse, A., Konganti, K., & Ing, N. H. (2021). Transcriptomic analysis of the honey bee (Apis mellifera) queen spermathecae reveals genes that may be involved in sperm storage after mating. PLoS one, 16(1). https://doi.org/10.1371/journal.pone.0244648
30 Liu, Z., Liu, F., Li, G., Chi, X., Wang, Y., Wang, H. W., Ma, L., Han, K., Zhao, G., Guo, X., & Xu, B. (2020). Metabolite Support of Long-Term Storage of Sperm in the Spermatheca of Honeybee (Apis mellifera) Queens. Frontiers in Physiology, 11. https://doi.org/10.3389/fphys.2020.574856
31 Couvillon, M. J., Hughes, W. O. H., Perez-Sato, J. A., Martin, S. J., Roy, G. G. F., & Ratnieks, F. L. W. (2010). Sexual selection in honey bees: Colony variation and the importance of size in male mating success. Behavioral Ecology, 21(3). https://doi.org/10.1093/beheco/arq016
32 Schlüns, H., Moritz, R. F. A., Neumann, P., Kryger, P., & Koeniger, G. (2005). Multiple nuptial flights, sperm transfer and the evolution of extreme polyandry in honeybee queens. Animal Behaviour, 70(1), 125-131. https://doi.org/10.1016/j.anbehav.2004.11.005
33 Laidlaw, H. H., & Page, R. E. (1984). Polyandry in Honey Bees (Apis mellifera L.): Sperm Utilization and Intracolony Genetic Relationships. Genetics, 108(4), 985-997. https://doi.org/10.1093/genetics/108.4.985
34 Koeniger, N., & Koeniger, G. (2007). Mating flight duration of Apis mellifera queens: As short as possible, as long as necessary. Apidologie, 38, 606-611. https://doi.org/10.1051/apido:2007060
35 Verma, L. R. (1973). An ionic basis for a possible mechanism of sperm survival in the spermatheca of the queen honey bee (Apis mellifera L.). Comparative Biochemistry and Physiology Part A: Physiology, 44(4), 1325-1331. https://doi.org/10.1016/0300-9629(73)90272-7
36 Klenka, M., Koenigera, G., Koenigera, N., & Fasold, H. (2004). Proteins in spermathecal gland secretion and spermathecal fluid and the properties of a 29 kDa protein in queens of Apis mellifera. Apidologie, 35(4), 371-381. https://doi.org/10.1051/apido:2004029